Probing H₂⁺ Formation in Strong-Field Ionization of Water Using Pump-Probe Spectroscopy and Covariance Mapping

<u>Chuan Cheng^{1,2}</u>, Eleanor Weckwerth^{1,2}, Ian Gabalski^{2,3}, Andrew J. Howard^{2,3}, Aaron M. Ghrist^{1,2}, Eric Wells⁴, Philip Howard. Bucksbaum^{1,2,3,5}

¹Department of Physics, Stanford University, Stanford, California 94305, USA ²Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ³Department of Applied Physics, Stanford University, Stanford, California 94305, USA ⁴Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA ⁵Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

Understanding the ultrafast dynamics governing molecular fragmentation under intense laser fields is crucial for advancing strong-field physics and attosecond science. In this work, we investigate the formation of H_2^+ from water (H_2O) during strong-field ionization using a femtosecond pump-probe technique combined with covariance mapping analysis. A near-infrared femtosecond laser pulse initiates ionization and dissociation, while a delayed probe pulse further ionizes the evolving molecular fragments. By employing covariance analysis of electron-ion momentum distributions, we resolve ionization pathways leading to H_2^+ formation. Our results provide insights into the ultrafast proton migration and charge redistribution mechanisms that facilitate molecular hydrogen cation production.

Keywords: strong field, covariance, proton migration

Acknowledgement: This research is supported by the National Science Foundation.