Ultrafast Charge Transfer Dynamics in a Plasmonic Photocatalyst Studied by Femtosecond Time-Resolved X-ray Photoelectron Spectroscopy

Zachery Donnellan,^{1,2} Kin Fung Lai,¹ Sahan Perera,¹ Lars Hoffmann,^{1,2} Marieke Stapf,³ Dmitrii Potorochin,^{3,4} Carlos Mora Perez,¹ Drew Glenna,^{1,5} Yvonne Joseph,³ Lukas Wenthaus,⁴ Dmytro Kutnyakhov,⁴ Nils Wind,^{4,6} Siarhei Dziarzhytski,⁴ Federico Pressacco,⁴ Daniel Neumark,^{1,2} Wolfgang Eberhardt,⁴ Serguei Molodtsov,^{3,7} Friedrich Roth,³ Jin Qian,¹ and Oliver Gessner¹

¹Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA ²Dept. of Chemistry, UC Berkeley, Berkeley, CA, USA ³TU Bergakademie Freiberg, Freiberg, Germany ⁴Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ⁵Dept. of Nuclear Engineering & Industrial Management, Univ. of Idaho, Moscow, Idaho, USA ⁶Kiel Univ., Kiel, Germany ⁷European XFEL GmbH, Schenefeld, Germany

Heterogeneous interfaces between metal nanoparticles (MeNPs) and transition metal semiconductors (SCs) attract significant attention due to their potential to provide routes to renewable, carbon-free energy production and storage through processes such as photocatalytic hydrogen generation from water. A particularly intensely studied model system for photochemical water splitting consists of plasmonically active, spherical gold nanoparticles (AuNPs) attached to nanocrystalline TiO₂ substrates, shown in Figure 1. Despite significant efforts, the overall efficiencies of plasmonic light harvesting systems generally remain rather low, requiring a deeper understanding of the fundamental dynamics underlying their function. Currently, charge transfer (CT) between MeNPs and SCs is commonly described by either plasmon-induced hot-electron transfer (PHET) or plasmon-induced metal-to-semiconductor interfacial charge transfer transitions (PICTT). To gain a deeper understanding of these competing processes, we have measured the ultrafast interfacial charge injection and recombination dynamics for AuNP sensitized TiO₂ at the FLASH Free Electron Laser in Hamburg under UHV and water exposed conditions via femtosecond Time-resolved X-ray Photoelectron Spectroscopy (TRXPS). The results will be discussed within a kinetic model considering various CT and relaxation channels. The model is complemented by high-level ab-initio calculations based on constrained density functional theory.

Keywords: Charge transfer, photocatalysis, nanoplasmonics, FELs, time-resolved XPS.

Figure 1. a) Conceptual representation of competing electronic processes after photoexcitation. **b)** Transient Au4f photoemission spectra during photoinduced CT in the AuNP/TiO₂ system recorded at FLASH.