Enhanced superconducting gap in the Hg-based trilayer cuprate superconductor revealed by micro-spot ARPES

<u>Masafumi Horio¹</u>, Masashige Miyamoto¹, Yutaro Mino^{2,3}, Ryuta Arai^{2,3}, Shigeyuki Ishida³, Yu Murano¹, Jacek Osiecki⁴, Balasubramanian Thiagarajan⁴, Craig Polley⁴, Chul-Ho Lee³, Taichiro Nishio², Hiroshi Eisaki³, Iwao Matsuda¹

¹Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan ²Department of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan ³National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

⁴Max IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden

The record of the highest superconducting transition temperature (T_c) at ambient pressure has been held by the Hg-based trilayer cuprate HgBa₂Ca₂Cu₃O_{8+δ} (Hg1223) [1] for more than 30 years. Even though its electronic-structure investigation is of primary importance, angle-resolved photoemission spectroscopy (ARPES) studies have been hampered by the limited availability of high-quality single crystals as well as by the difficulty in exposing a flat surface with large area by cleaving. Unlike the well-studied Bi-based counterpart Bi₂Sr₂Ca₂Cu₃O_{10+δ} (Bi2223) with a lower T_c , Hg1223 lacks natural cleavage planes, and hence cleaving should yield a disordered surface. Recently, Mino *et al.* [2] have established methodology to grow single crystals of the Hg-based trilayer cuprates with high reproducibility through partial Re substitutions, and singlecrystalline (Hg,Re)Ba₂Ca₂Cu₃O_{8+δ} [(Hg,Re)1223] samples with T_c 's exceeding 130 K have been reproducibly synthesized. While inhomogeneity created by cleaving would be inevitable, one could purify ARPES signals by exploiting a tightly focused incident beam.

We have performed micro-spot ARPES measurements of (Hg,Re)1223 at the Bloch beamline of MAX IV [3], where the photon beam is focused down to 10μ m × 10μ m. The quality of the ARPES spectra varied significantly over space, but Fermi surfaces and superconducting gaps were successfully captured by pinpointing an appropriate spot. The prominent feature of the trilayer cuprate is the existence of two inequivalent CuO₂ planes in a unit cell. Compared to the trilayer cuprate Bi2223 with a lower T_c , the superconducting gap of (Hg,Re)1223 was enhanced selectively for one of those CuO₂ planes, suggesting the reinforced Cooper paring on that CuO₂ plane as a key ingredient of the highest T_c of the Hg-based trilayer cuprate.

Keywords: high-temperature superconductors, cuprates, micro-spot ARPES.

Acknowledgement: Work supported by Japan Society for the Promotion of Science (JSPS).

¹A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, "Superconductivity above 130 K in the Hg– Ba–Ca–Cu–O system", Nature 363, 56 (1993).

²Y. Mino *et al.*, "Single-Crystal Growth and Characterization of Cuprate Superconductor $(Hg, Re)Ba_2Ca_2Cu_3O_{8+\delta}$ ", J. Phys. Soc. Jpn. 93, 044707 (2024).

³C. M. Polley *et al.*, "*The Bloch Beamline at MAX IV: Micro-Spot ARPES from a Conventional, Full-Featured Beamline*", Synchrotron Radiation News 37, 18 (2024).