Tuning Au–TiO₂ Photocatalytic Interfaces: Impact of Oxygen Vacancies and Gold Nanoparticle Size on Electronic Structure and Carrier Dynamics

Carlos Mora Perez¹, Ernest Hermosillo¹, Drew M. Glenna^{1,2}, Oliver Gessner¹, Jin Qian¹

- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- 2. Department of Nuclear Engineering & Industrial Management, University of Idaho, Idaho Falls, Idaho 83402, United States

Gold (Au) integrated onto titanium dioxide (TiO₂) surfaces offers a promising strategy to enhance the photocatalytic efficiency of the semiconductor system. This work investigates how oxygen vacancy defects and structural changes in the anatase TiO₂ (101) surface influence the electronic properties and carrier dynamics of the Au-TiO₂ heterojunction. To this end, we compare the pristine surface with one modified by a single surface oxygen vacancy and examine how gold nanoparticle size affects these interactions by studying Au₄, Au₁₉, and Au₂₀ clusters. Ground-state density functional theory (DFT) calculations demonstrate that the oxygen vacancy dramatically modifies the interfacial electronic structure, with density of states (DOS) analysis revealing the formation of a trap state for the isolated TiO₂ slab model. Upon formation of the Au–TiO₂ heterojunction, the defect site results in a larger perturbation to the DOS of the closedshell Au clusters (Au₄, Au₂₀) TiO₂ heterojunction compared to the open-shell Au₁₉ cluster TiO₂ heterojunction. Meanwhile, ab initio molecular dynamics (AIMD) simulations at 300 K further reveal distinct differences in the atomic motion of the AuNPs and the TiO₂ surface between pristine and oxygen-vacancy-modified systems under experimentally relevant conditions. Furthermore, nonadiabatic molecular dynamics (NAMD) simulations were employed to calculate carrier lifetimes associated with electron injection and electron-hole recombination processes across the interface. These findings underscore the critical role of defect engineering and interfacial structural dynamics in tailoring the performance of Au–TiO₂ photocatalytic systems.

Keywords: Gold, Oxides, DFT, AIMD, NAMD, Injection, Recombination