Tridimensional magnetism in Superconducting Infinite-Layer PrNiO₂ studied with Resonant Inelastic X-ray Scattering

F. Rosa,¹ N.B. Brookes², D. Di Castro³, G. Merzoni^{1,4}, D. Preziosi⁵, H. Sahib⁵, M. Salluzzo⁶ and G. Ghiringhelli¹

¹Physics Department, Politecnico di Milano, Milano, Italy
 ²ESRF The European Synchrotron, Grenoble, France
 ³Università di Roma Tor Vergata, Roma, Italy
 ⁴EuXFEL, Hamburg, Germany
 ⁵Université de Strasbourg IPCMS, Strasbourg, France
 ⁶CNR-SPIN, Napoli, Italy

Infinite-layer (IL) nickelates have been reported as superconductive in 2019, coming to the forefront as one of the most promising class of cuprate-akin compounds^{1,2}: the general interest in their electronic structure has pointed out both analogies and differences with copper oxides^{3,4}. In this context, particular attention has been addressed to spin order: recent RIXS works^{5,6,7} have reported the presence of magnetic excitations both in hole-doped and undoped compounds, with the former showing a much larger damping of the (para)magnon peak due to progressive hindering of magnetic correlations by the doping holes. Because p-doping is, at present, a necessary ingredient to obtain superconductivity in these compounds, this has been interpreted as a sign of intrinsic competition between magnetism and superconductivity. In this work, we question this interpretation by taking advantage of the recent report of superconductivity caused by self-doping in nominally undoped PrNiO₂ (PNO)⁸. We performed extensive RIXS measurements on the very same PNO samples at a temperature close to the SC onset, exploiting both the momentum and polarization resolution provided by the technique. Our results shown a rather sharp magnon dispersion over the whole Brillouin zone. The presence of a gap at the r point revealed an interlayer exchange coupling between the NiO₂ planes, showing the inadequacy the bidimensional Linear Spin Wave models previously employed in literature^{3,5,7}. We fitted the dispersion with a tridimensional model explicitly including such coupling, and compared the result to the Infinite-Layer cuprate CaCuO₂. An exchange coupling of few *meV* in the direction orthogonal to the planes was then retrieved for both compounds. Our results have a double valence: (1) they hint at the possible coexistence between superconductivity and magnetism in PNO, and (2) they demonstrate the tridimensional nature of the latter, providing an estimate of the interlayer exchange coupling.

Keywords: magnetism, nickelates, RIXS, cuprate

¹Li, D., et al., *Nature* 572.7771 (2019): 624-627.
²Nomura, Y. and Ryotaro A, *Reports on Progress in Physics* 85.5 (2022): 052501.
³Rossi, M., et al. "Universal orbital and magnetic structures in infinite-layer nickelates." *Physical Review B* 109.2 (2024): 024512.
⁴Hepting, Matthias, et al., *Nature materials* 19.4 (2020): 381-385.
⁵Lu, Haiyu, et al., *Science* 373.6551 (2021): 213-216.
⁶Rosa, Francesco, et al., *Physical Review B* 110.22 (2024): 224431.
⁷Gao, Qiang, et al. ", *Nature Communications* 15.1 (2024): 5576.
⁸Sahib, Hoshang, et al., *Advanced Materials* (2024): 2416187.
⁹Peng, Y. Y., et al., *Nature Physics* 13.12 (2017): 1201-1206.