Unraveling band structures of Rh₂MnGa thin films by synchrotron radiation ARPES

Tatsuya Tomida¹, K. Nakanishi¹, M. Kakoki¹, K. Kuroda^{1,2}, K. Miyamoto³, T. Okuda^{2,3}, K. Sumida³, B. Bairagya⁴, S. Singh⁴, K. Masuda⁴, Y. Sakuraba⁴, A. Kimura^{1,2,5}

¹Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

²International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Higashi-Hiroshima 739-8526, Japan

³Research Institute for Synchrotron Radiation Science (HiSOR), Hiroshima University, Higashi-Hiroshima 739-0046, Japan

⁴National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan ⁵National Institutes for Quantum Science and Technology (QST), Sayo 679-5148, Japan

The anomalous Nernst effect (ANE), in which an electromotive force is generated perpendicular to the thermal gradient in magnetic materials, has attracted considerable attention. Recently, a large ANE accompanied by a thermoelectric power of 6~8µV/K—the highest reported to date—was observed in the Heusler compound Co₂MnGa [1,2]. Theoretically, this significant ANE has been attributed to an intrinsic mechanism arising from the materials's topological band structure, namely the large Berry curvature associated with line nodes and Weyl points near the Fermi level. However, for practical applications, a thermoelectric power exceeding 10 µV/K is generally required, and the development of higher-performance materials remains a challenge. Recent first-principles calculations predict that the absolute value of the thermoelectric power in Rh₂MnGa is approximately twice that of Co₂MnGa. Moreover, it has been reported that Rh₂MnGa exhibits thermoelectric powers of opposite signs, depending on the sign of the Berry curvature in momentum space [3]. To investigate the origin of this unusual ANE in Rh₂MnGa, we performed angle-resolved photoelectron spectroscopy (ARPES) using synchrotron radiation at beamline BL-9B of HiSOR. The thin film sample, prepared at NIMS, was transferred to the ARPES system at HiSOR via a vacuum suitcase chamber. Isoenergy surface measurements taken at a photon energy of 55 eV revealed a V-shaped structure opening along the Γ-K direction of the Brillouin zone near the Fermi level, which reversed its opening direction when moving away from the Fermi level. This behavior indicates the presence of energy-dependent line nodes composed of linearly dispersing bands. Our findings offer new insights into the relationship between line nodes and the ANE in Rh₂MnGa, and contribute to the ongoing development of high-performance thermoelectric materials.

¹A. Sakai *et al.*, Nat. Phys. **14**, 1119 (2018).

²K. Sumida *et al.*, Commun. Mater. **1**, 89 (2020).

³J. Noky *et al.*, npj Compt. Mater. **6**, 77 (2020).