Observation of flat bands, mirror-odd and mirror-even spin texture in epitaxially strained RuO2 <u>Yichen Zhang¹</u>, Seung Gyo Jeong², Luca Buiarelli², Seungjun Lee³, Yucheng Guo¹, Jiaqin Wen¹, Hang Li⁴, Sreejith Nair², In Hyeok Choi⁵, Zheng Ren¹, Ziqin Yue^{1,6}, Alexei Fedorov⁷, Sung-Kwan Mo⁷, Junichiro Kono^{1,8,9,10,11}, Jong Seok Lee⁵, Tony Low³, Turan Birol², Rafael M. Fernandes¹², Milan Radovic⁴, Bharat Jalan², Ming Yi^{1,8,11} ¹Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA ²Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minnesotas 55455, USA ³Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA ⁴Photon Science Division, Paul Scherrer Institute, Villigen 5232, Switzerland ⁵Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea ⁶Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA ⁷Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁸Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA ⁹Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA ¹⁰Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA ¹¹Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA ¹²Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA Recently, rutile RuO₂ has gained significant renewed interest due to the predicted prominent altermagnetic spin splitting. Accumulating experimental evidence shows that, on the contrary, RuO₂ in its bulk and thick film form lacks magnetism. However, the magnetic nature of RuO₂ remains poorly explored in the ultrathin limit where epitaxial strain from a substrate could be significant. Here, using spin-resolved angle-resolved photoemission spectroscopy supported by ab-initio calculations, we provide the first observation of the electronic dispersions characterized by flat bands near the Fermi level and the coexisting mirror-odd and mirror-even momentum-dependent spin texture in 2.7 nm RuO₂ epitaxial heterostructures. We unbiasedly analyze all the nonmagnetic and magnetic possibilities giving rise to such spin texture based on symmetry analyses. The work provides key insights into the topological and magnetic properties of ultrathin RuO₂ epitaxial layers and serves as a foundation for deepening the understanding of symmetry breaking in strain-engineered RuO₂.